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A set of N basis functions φn(x), n = 1,2,…,N, is defined on the interval 0 ≤ x ≤ L. Given 

the velocity U(x), the filtered velocity  U x  is defined as the least-square projection 

of U(x) onto the basis functions. That is,  U x  is given by 
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where the basis-function coefficients an are determined by the condition that they 

minimize the mean-square residual 
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By substituting Eq. (1) into Eq. (2) and differentiating with respect to am, show that the 

coefficients satisfy the matrix equation 
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with 
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Show that the matrix B is symmetric positive definite. Show that  U x  can be 

expressed as the result of a filtering operation 
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where the filter is 
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and 1

mnB  denotes the m-n element of the inverse of the matrix B. Argue, both from 

Eq. (6) and from the equation for ∂χ/∂am, that the filtered residual  u x  is zero. 

 

Solution 

 

By substituting Eq. (1) into Eq. (2) and differentiating with respect to am, we get 
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Since an is a set of coefficients which minimize Eq. (2), then Eq. (8) should equal zero. 

This is 
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After dropping the constant 2 and rearranging the remaining terms we have 
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The right hand side term is vm as shown in Eq. (10). As for the left hand side of Eq. (10), 

we could write 

 

        
0 0

1 1

1 1
d d

mn

N NL L

m n n n m n

n n

B

x a x x a x x x
L L

   
 

   
      

  
     (11) 

 

Here Eq. (3) holds.  

Based on Eq. (4) we can rewrite matrix B into the following form. 
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where φ is a column vector 
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Let y be an arbitrary non-zero vector, do the following matrix multiplication 
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Since φ2 ≥ 0 and φ is a basis function, the integral of φ2 in [0, L] should not be zero. 

Therefore for arbitrary non-zero vector y, Eq. (14) satisfies 
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This is equivalent to that Eq. (12) is a positive definite matrix. 

In fact, Eq. (7) can be expressed in matrix notations 
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where B-1 is the inverse matrix of B. Noting that B and B-1 only depend on x, substitute 

Eq. (16) into the right hand side of Eq. (6) we obtain 

 



 

      

      

T 1

T 1

1
d

1
d

x

x L

x

x L

x x r U x r r
L

x x r U x r r
L









 
  

 

  





φ B φ

φ B φ

  (17) 

 

Let’s take out the integral term in Eq. (17) and perform a variable substitution 
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Recalling Eq. (3) and Eq. (5) we can turn Eq. (18) into 
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where a is a column vector expressed as Eq. (20) 
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Substitute Eq. (19) back into Eq. (17) 
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It means that Eq. (6) holds true. 
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