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In non-swirling statistically axisymmetric flows, the Reynolds equations of
the pipe flow in polar-cylindrical coordinates are:
continuity equation
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axial momentum equation
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and radial momentum equation
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Consider the fully developed turbulent pipe flow. The flow is statistically
stationary and the statistics are only depend on r-coordinate. Then, the conti-
nuity equation can be rewritten as
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r is in range (0, R), here we can assume that
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with the assumption that
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integrate Eq. (7) with respect to r, we get

r〈V 〉 = Cv1 (9)

where Cv1 is constant. Apply the boundary condition that 〈V 〉 = 0 at r = R,
then Cv1 = 0. And consequently, 〈V 〉 = 0. Hence, the radial momentum
equation can be rewritten as
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integrate with respect to r, we get
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where Cv2 is constant. With boundary condition 〈v2〉 = 〈w2〉 = 0 and 〈p〉 = pw
at r = R, we have
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note that the statistics of fluctuating velocity are independent on x, we have
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substitute Eq. (14) into Eq. (2)
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the shear stress is defined as

τ ≡ ρν d〈U〉
dr
− ρ〈uv〉 (16)

rearrange Eq. (15) and make use of Eq. (16)
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integrate Eq. (18) with respect to r
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Since the flow in the pipe is fully developed, it is reasonable to assume that the
flow is axisymmetric and the shear stress along the central line (r = 0) is 0.
Then C ′

v3 = 0. And finally
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If we introduce the wall shear stress

τw = −τ(R) (21)

thus
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after rearrange the terms, we get

− dpw
dx

= 2
τw
R

(23)
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