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In non-swirling statistically axisymmetric flows, the Reynolds equations of
the pipe flow in polar-cylindrical coordinates are:

continuity equation
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Consider the fully developed turbulent pipe flow. The flow is statistically
stationary and the statistics are only depend on r-coordinate. Then, the conti-
nuity equation can be rewritten as
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r is in range (0, R), here we can assume that
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integrate Eq. (7) with respect to r, we get
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where Cy; is constant. Apply the boundary condition that (V) = 0 at r = R,
then Cy; = 0. And consequently, (V) = 0. Hence, the radial momentum
equation can be rewritten as

_ 1o 10 e (@)
0= p Or rar(r<v N+ r (10)
integrate with respect to r, we get
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where C,» is constant. With boundary condition (v?) = (w?) = 0 and (p) = py

at r = R, we have
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note that the statistics of fluctuating velocity are independent on x, we have
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substitute Eq. (14) into Eq. (2)
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the shear stress is defined as
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rearrange Eq. (15) and make use of Eq. (16)
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integrate Eq. (18) with respect to r
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Since the flow in the pipe is fully developed, it is reasonable to assume that the
flow is axisymmetric and the shear stress along the central line (r = 0) is 0.

Then C!5 = 0. And finally
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If we introduce the wall shear stress
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after rearrange the terms, we get
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